153 research outputs found

    An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach

    No full text

    Magneto-hydrodynamics of multi-phase flows in heterogeneous systems with large property gradients

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-02-02, accepted 2021-08-13, registration 2021-08-23, pub-electronic 2021-09-23, online 2021-09-23, collection 2021-12Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/P005284/1Abstract: The complex interplay between thermal, hydrodynamic, and electromagnetic, forces governs the evolution of multi-phase systems in high technology applications, such as advanced manufacturing and fusion power plant operation. In this work, a new formulation of the time dependent magnetic induction equation is fully coupled to a set of conservation laws for multi-phase fluid flow, energy transport and chemical species transport that describes melting and solidification state transitions. A finite-volume discretisation of the resulting system of equations is performed, where a novel projection method is formulated to ensure that the magnetic field remains divergence free. The proposed framework is validated by accurately replicating a Hartmann flow profile. Further validation is performed through correctly predicting the experimentally observed trajectory of Argon bubbles rising in a liquid metal under varying applied magnetic fields. Finally, the applicability of the framework to technologically relevant processes is illustrated through the simulation of an electrical arc welding process between dissimilar metals. The proposed framework addresses an urgent need for numerical methods to understand the evolution of multi-phase systems with large electromagnetic property contrast

    Publisher correction: unveiling the Re effect in Ni-based single crystal superalloys

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Micromechanical finite element modelling of thermo-mechanical fatigue for P91 steels

    Get PDF
    In this paper, the cyclic plasticity and fatigue crack initiation behaviour of a tempered martensite ferritic steel under thermo-mechanical fatigue conditions is examined by means of micromechanical finite element modelling. The crystal plasticity-based model explicitly reflects the microstructure of the material, measured by electronic backscatter diffraction. The predicted cyclic thermo-mechanical response agrees well with experiments under both in-phase and out-of-phase conditions. A thermo-mechanical fatigue indicator parameter, with stress triaxiality and temperature taken into account, is developed to predict fatigue crack initiation. In the fatigue crack initiation simulation, the out-of-phase thermo-mechanical response is identified to be more dangerous than in-phase response, which is consistent with experimental failure data. It is shown that the behaviour of thermo-mechanical fatigue can be effectively predicted at the microstructural level and this can lead to a more accurate assessment procedure for power plant components

    Microscale modelling of the deformation of a martensitic steel using the Voronoi Tessellation method

    Get PDF
    peer-reviewedThe deformation of a martensitic steel (P91) at the microscale is investigated using the finite element method. The approach takes into account the hierarchical grain-packet-block microstructure of the steel as determined experimentally by electron backscatter diffraction (EBSD). The orientation relationship for P91 between the prior austenite grain (PAG) and the martensitic packet/block is determined and found to be consistent with the Kurdjumow-Sachs (K-S) relationship. This relationship is incorporated within a finite-element model to represent the material microstructure, using a representative volume element (RVE) generated by a modified centroidal Voronoi tesselation (VT) approach. A non-linear, rate dependent, finite strain crystal plasticity model is used to simulate the mechanical response of the material at the micro- and macro-level and the sensitivity of the results to the model assumptions is investigated. It is found that the global (macro) mechanical response predicted by the RVE generated using the modified VT model is in good agreement with that predicted by an RVE taken directly from the measured EBSD microstructure. The influence of block/packet/grain boundaries on the local (micro) deformation is examined and it is found that the microscale prediction obtained using the RVE based on the modified VT microstructure, with an appropriate choice of microstructural parameters, is consistent with that obtained using the measured EBSD map
    • …
    corecore